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FOCUS OF THIS TALK

 Motivation

 Modelling: Kinetic Theory

 From dilute gases to dense gases/liquids: The effect of density

 Electrons

 Positrons

 Ionization: electrons vs positrons



MOTIVATION

Study of e- and e+ in gas and liquid systems is of both fundamental interest and for 
technological applications:

Program at JCU



OWARDS A TRANSPORT MODEL IN DENSE GASES/LIQUIDS

MODELING 
e+/e-

TRANSPORT

INPUTS

Monte Carlo

Cross Sections

Emission Spectra

Transport 
Coefficients

Kinetic Theory

1.) Structure effects

(structure factor)

2.) Modifications to the 
scattering potential

3.) Other density effects

-trapping/localised states

-Multiple collision effects

-Polar liquids



KINETIC THEORY



.) STRUCTURE EFFECTS: COHERENT SCATTERING 

Detector

Plane 
wave

Dynamic structure factor
- properties of the medium on

Single scattering cross section
- properties of interaction only

L. Van Hove (1957), M. H. Cohen and J. Lekner (1



2.) MODIFICATION OF SCATTERING POTENTIAL

Many Ar Atoms



RESULTS: ELECTRONS IN LIQUID ARGON

G. J. Boyle et al. (2





RESULTS: POSITRONS IN LIQUID HELIUM



RANSPORT MODEL INCLUDING IONIZATION

MODELING 
e+/e-

TRANSPORT

INPUTS

Monte Carlo

Cross Sections

Emission Spectra

Transport 
Coefficients

Kinetic Theory

Ionization Collision Operator

-e- vs e+

-Energy sharing



ONIZATION COLLISION OPERATOR

EII

PII



POSITRON-IMPACT IONIZATION IN H2

Kover and Laricchia, Phys. Rev. Lett. 80, 5309 (199

y-partitioning function, P(U,U’) 
High impact energies: e+ gets most of the energy
Near-threshold impact energies: e+ and e- share energy evenly
Model can be fit to experimental data (e.g. H2)



POSITRON-IMPACT IONIZATION IN H2

Compiled by Belgrade Group: see G Boyle et al. Phys. Rev.  A (20



POSITRON-IMPACT IONIZATION IN H2O

A Bankovic et al.  New J. Phys. (2012)
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SENSITIVITY TO IONIZATION ENERGY SHARING



FUTURE WORK

Electrons and Positrons in other Noble gas liquids – Ar, Kr, Xe

Positronium formation in liquids

Bubbles, clusters, and other density effects

Polar liquids, Biological Matter

Ionization Energy Sharing: e+ more sensitive than e-



THANK YOU FOR LISTENING!





POSITRONS IN LIQUID HELIUM



RESULTS: ELECTRONS IN LIQUID XENON

G. J. Boyle et al. (2



HELIUM PAIR-CORRELATION AND SCREENING





oltzmann equation Green’s function

Green’s function

(Pulsed Townsend)

Arbitrary source 
distributions

Steady-State 
Townsend

Time of Flight
Swarm Experiments

Pulsed Townsend

Applications



RELAXATION OF E- IN AR: GAS VS. LIQUID 

ArTPC:
– Neutrino detection
– Ionized electrons drift through liquid Ar
– Low field, low-energy regime

istribution function and transport properties:



ELAXATION OF E- IN AR: GAS VS. LIQUID 
F0 CONTOURS, NUMBER DENSITY

nn00t*=20t*=20 nn00t*=100t*=100*=1*=1



nn00t*=20t*=20 nn00t*=100t*=100*=1*=1

LAXATION OF E- IN AR: GAS VS. LIQUID 
F1 CONTOURS, FLUX


