Attosecond time delay in photoemission and electron scattering near threshold

A.W. Bray¹, I. Bray², and A.S. Kheifets¹

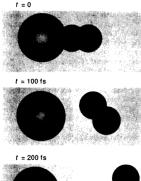
 $^1{\rm Australian}$ National University, Canberra, Australian Capital Territory $^2{\rm Curtin}$ University, Perth, Western Australia

Hot Topic 10A Photons SF/Atto

ICPEAC 2017

1st August, Cairns, Australia

Time resolved molecular collisions



1999 Nobel Prize

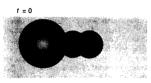
"Real-time laser femtochemistry"

[Zewail et al. 1988]

$$ICN \rightarrow I + CN$$

Time resolved molecular collisions

1999 Nobel Prize


 $\hbox{``Real-time laser femtochemistry''}$

[Zewail et al. 1988]

$$ICN \rightarrow I + CN$$

$$1 \text{ fs} = 10^{-15} \text{ s}$$

vibrational period of $H_2 \approx 8 \mathrm{\ fs}$

t = 200 fs

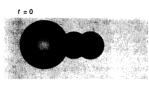
2 Å .

Time resolved molecular collisions

1999 Nobel Prize

"Real-time laser femtochemistry"

[Zewail et al. 1988]

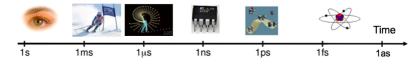

$$ICN \rightarrow I + CN$$

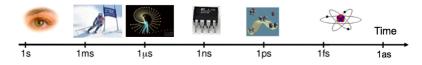
$$1 \text{ fs} = 10^{-15} \text{ s}$$


$$1 \text{ as} = 10^{-18} \text{ s}$$

vibrational period of $H_2 \approx 8 \text{ fs}$

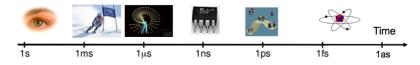
orbital period of e in $H \approx 150 \text{ as}$


 $t = 200 \, \text{fs}$


■ Attosecond Streak Camera [Itatani et al. 2002]

U. Keller, "Attosecond ionization time delays", April 2016, Canberra Physics Colloquium

■ Attosecond Streak Camera [Itatani et al. 2002]

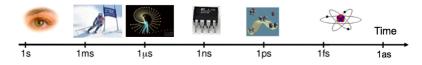

U. Keller, "Attosecond ionization time delays", April 2016, Canberra Physics Colloquium

Delay in photoemission

"A delay in photoemission (...) would compromise the accuracy of setting the zero of time for clocking microscopic processes on the atomic time scale."

■ Attosecond Streak Camera [Itatani et al. 2002]

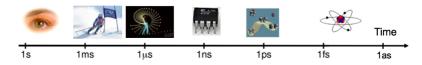
U. Keller, "Attosecond ionization time delays", April 2016, Canberra Physics Colloquium


Delay in photoemission

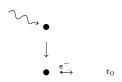
"A delay in photoemission (...) would compromise the accuracy of setting the zero of time for clocking microscopic processes on the atomic time scale."

■ Attosecond Streak Camera [Itatani et al. 2002]

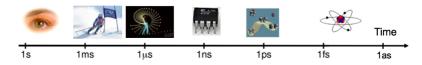
U. Keller, "Attosecond ionization time delays", April 2016, Canberra Physics Colloquium


Delay in photoemission

"A delay in photoemission (...) would compromise the accuracy of setting the zero of time for clocking microscopic processes on the atomic time scale."

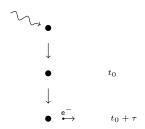

■ Attosecond Streak Camera [Itatani et al. 2002]

U. Keller, "Attosecond ionization time delays", April 2016, Canberra Physics Colloquium


Delay in photoemission

"A delay in photoemission (...) would compromise the accuracy of setting the zero of time for clocking microscopic processes on the atomic time scale."

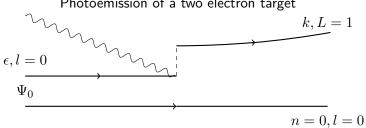
■ Attosecond Streak Camera [Itatani et al. 2002]



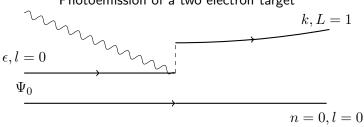
U. Keller, "Attosecond ionization time delays", April 2016, Canberra Physics Colloquium

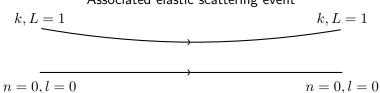
Delay in photoemission

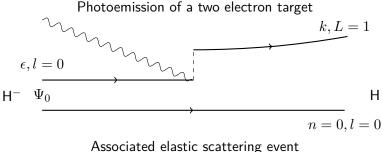
"A delay in photoemission (...) would compromise the accuracy of setting the zero of time for clocking microscopic processes on the atomic time scale."

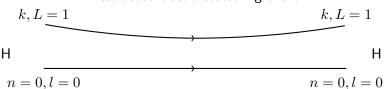

[Schultze et al. 2010]

alexander.bray@anu.edu.au

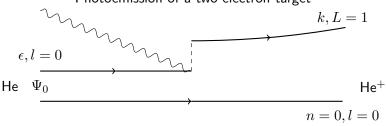

Photoemission of a two electron target

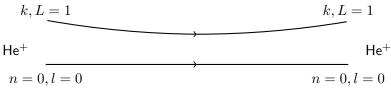

$$n=0, t=0$$


Photoemission of a two electron target



Associated elastic scattering event





Photoemission of a two electron target

Associated elastic scattering event

Scattering formulation

Cross section

$$\sigma_{fi} \propto |\langle \boldsymbol{k}_f \phi_f | V | \Psi_i^{(+)} \rangle|^2$$

index i initialindex f final σ_{fi} cross section from state $i \to f$ $\Psi^{(+)}$ $(H_a + V)|\Psi^{(+)}\rangle = E|\Psi^{(+)}\rangle$ ${m k}$ projectile state ϕ target (pseudo)state V interaction potentials

Scattering formulation

Cross section

$$\sigma_{fi} \propto |\langle \mathbf{k}_f \phi_f | V | \Psi_i^{(+)} \rangle|^2$$
$$\equiv |\langle \mathbf{k}_f \phi_f | T | \phi_i \mathbf{k}_i \rangle|^2$$

index i initial index f final

 σ_{fi} cross section from state $i \to f$ $\Psi^{(+)} \ (H_a + V) |\Psi^{(+)}\rangle = E |\Psi^{(+)}\rangle$ ${m k}$ projectile state

 ϕ target (pseudo)state

V interaction potentials

T transition operator

Scattering formulation

Cross section

$$\sigma_{fi} \propto |\langle \mathbf{k}_f \phi_f | V | \Psi_i^{(+)} \rangle|^2$$
$$\equiv |\langle \mathbf{k}_f \phi_f | T | \phi_i \mathbf{k}_i \rangle|^2$$

index i initial index f final

E total energy $E = k_i^2/2 + \epsilon_i$

 ϵ target energy

k projectile stateφ target (pseudo)state

V interaction potentials

T transition operator

Convergent close-coupling

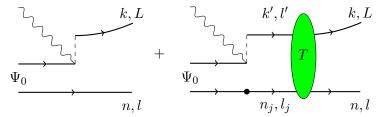
$$\langle \mathbf{k}_f \phi_f | T | \phi_i \mathbf{k}_i \rangle = \langle \mathbf{k}_f \phi_f | V | \phi_i \mathbf{k}_i \rangle$$

$$+ \sum_{n=1}^{N} \int d^3k \frac{\langle \mathbf{k}_f \phi_f | V | \phi_n \mathbf{k} \rangle \langle \mathbf{k} \phi_n | T | \phi_i \mathbf{k}_i \rangle}{E + i0 - \epsilon_n - k^2 / 2}$$

Photoemission with CCC

Dipole Matrix

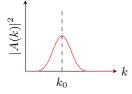
$$\begin{split} \langle Lkln\|D\|\Psi_0\rangle &= \langle Lk\, ln\|d\|\Psi_0\rangle \\ &+ \sum_{l_jn_j} \sum_{L'} \sum_{k'} \frac{\langle Lk\, ln\|T\|n_jl_j\, k'L'\rangle}{E+i0-\epsilon_j-k'^2/2} \langle L'k'\, l_jn_j\|d\|\Psi_0\rangle \end{split}$$


Photoemission with CCC

Dipole Matrix

$$\begin{split} \langle Lkln\|D\|\Psi_0\rangle &= \langle Lk\, ln\|d\|\Psi_0\rangle \\ &+ \sum_{l_jn_j} \sum_{L'} \sum_{k'}^{f} \frac{\langle Lk\, ln\|T\|n_jl_j\, k'L'\rangle}{E+i0-\epsilon_j-k'^2/2} \langle L'k'\, l_jn_j\|d\|\Psi_0\rangle \end{split}$$

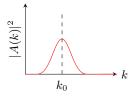
Diagrammatically:


■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]

■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]

Wavepacket of angular momentum L centred about k_0 for $r \to \infty$, t > T

$$\int A(k) \exp\{i(kx - \omega(k)t)\} dk$$



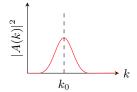
■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]

Wavepacket of angular momentum L centred about k_0 for $r \to \infty$, t > T

$$r = k_0(t - \tau_L) + r_0$$

$$\int A(k) \exp\{i(kx - \omega(k)t)\} dk$$

■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]


Wavepacket of angular momentum L centred about k_0 for $r \to \infty$, t > T

$$r = k_0(t - \tau_L) + r_0$$

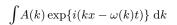
$$\tau_L = \frac{\mathrm{d}\delta_L(k)}{\mathrm{d}E} \Big|_{k=k_0}$$

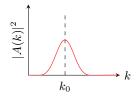
 δ_L phase shift in L-th partial wave

$$\int A(k) \exp\{i(kx - \omega(k)t)\} dk$$

■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]

Wavepacket of angular momentum L centred about k_0 for $r \to \infty$, t > T


$$r = k_0(t - \tau_L) + r_0$$

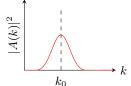

$$\tau_L = \frac{\mathrm{d}\delta_L(k)}{\mathrm{d}E} \bigg|_{k=k_0}$$

 δ_L phase shift in L-th partial wave

Elastic Scattering

$$\delta_L^{\rm el}(k) \propto \arg\left(\langle Lkln \| S \| nlkL \rangle\right)/2$$
 $\langle Lkln \| S \| nlkL \rangle = \exp\left\{2i\delta_L(k)\right\}$

■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]


Wavepacket of angular momentum L centred about k_0 for $r \to \infty$, t > T

$$r = k_0(t - \tau_L) + r_0$$

$$\tau_L = \frac{\mathrm{d}\delta_L(k)}{\mathrm{d}E}\Big|_{k=k_0}$$

 δ_L phase shift in L-th partial wave

$\int A(k) \exp\{i(kx - \omega(k)t)\} dk$

Elastic Scattering

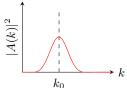
$$\delta_L^{\mathrm{el}}(k) \propto \arg\left(\langle Lkln\|S\|nlkL\rangle\right)/2$$

$$\langle Lkln||S||nlkL\rangle = \exp\left\{2i\delta_L(k)\right\}$$

Photoemission

$$\delta_L^{\mathrm{ph}}(k) \propto \mathrm{arg}\left(\langle Lkln\|D\|\Psi_0\rangle\right)$$

■ "Delay in atomic photoionisation" [Kheifets and Ivanov 2010]


Wavepacket of angular momentum L centred about k_0 for $r \to \infty$, t > T

$$r = k_0(t - \tau_L) + r_0$$

$$\tau_L = \frac{\mathrm{d}\delta_L(k)}{\mathrm{d}E}\Big|_{k=k_0}$$

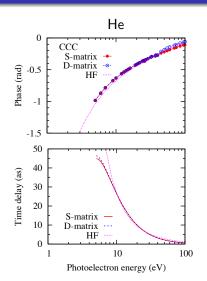
 δ_L phase shift in L-th partial wave

$\int A(k) \exp\{i(kx - \omega(k)t)\} \ \mathrm{d}k$ ^

Elastic Scattering

$$\delta_L^{\mathrm{el}}(k) \propto \arg\left(\langle Lkln \| S \| nlkL \rangle\right)/2$$

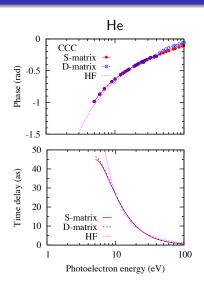
$$\langle Lkln||S||nlkL\rangle = \exp\{2i\delta_L(k)\}$$

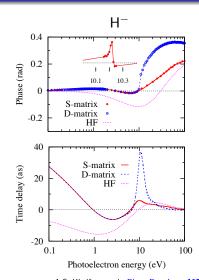

Photoemission

$$\delta_L^{\mathrm{ph}}(k) \propto \arg\left(\langle Lkln\|D\|\Psi_0\rangle\right)$$

(not quite the whole story)

Photoemission and elastic scattering delay




 H^-

A.S. Kheifets et al., Phys. Rev. Lett. 117, 143202

Photoemission and elastic scattering delay

A.S. Kheifets et al., Phys. Rev. Lett. 117, 143202

Summary

 CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)

Summary

- CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)
- Photoionsation and elastic scattering delay contrasted

Summary

- CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)
- Photoionsation and elastic scattering delay contrasted
- Large delay ($\simeq 40$ as) found for H⁻ across the n=2 excitation threshold

Summary

- CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)
- Photoionsation and elastic scattering delay contrasted
- Large delay ($\simeq 40$ as) found for H⁻ across the n=2 excitation threshold
- Attributed to the effect of the targets ground state electron correlation

Summary

- CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)
- Photoionsation and elastic scattering delay contrasted
- Large delay ($\simeq 40$ as) found for H⁻ across the n=2 excitation threshold
- Attributed to the effect of the targets ground state electron correlation

What's next:

Summary

- CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)
- Photoionsation and elastic scattering delay contrasted
- Large delay ($\simeq 40$ as) found for H⁻ across the n=2 excitation threshold
- Attributed to the effect of the targets ground state electron correlation

What's next:

Apply formalism to other targets

Summary

- CCC approach to photoionisation applied to the Wigner time delay of two electron systems (H⁻ and He)
- Photoionsation and elastic scattering delay contrasted
- Large delay ($\simeq 40$ as) found for H⁻ across the n=2 excitation threshold
- Attributed to the effect of the targets ground state electron correlation

What's next:

- Apply formalism to other targets
- Develop a TDSE based approach in combination with CCC