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Outline of Progress Report:

Introduction to attosecond pulse characterization

Recent progress:
- Noble gas atoms and negative ions

Novel approach: Ionization of bound wave packets

Test cases:
- Alkali atoms and noble gas atoms

Conclusions

“Eliminating the dipole phase in

attosecond pulse characterization

using Rydberg wave packets”[
Pabst and Dahlström, PRA 94, 013411 (2016)

]
(NORDITA + ITAMP VISITOR PROGRAM)
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[Paul et al., SCIENCE 1690 292 (2001)]
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Introduction to attosecond pulse characterization

Photoelectrons in energy domain: P(ε) ∼ |E (Ω)|2|Ψ(ε)|2

0

(a) (e)

XUV harmonic comb for High Harmonic Generation:

Odd high-order harmonics of laser: Ω2q+1 = (2q + 1)ω

Discrete peak of photoelectrons: ε2q+1 = ~Ω2q+1 − Ip,

GOAL: Measure the spectral phase between harmonics.
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Photoelectron spectrogram

Overlap XUV comb and phase-locked laser light:
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Laser-assisted redistribution of the photoelectron comb peaks.

Formation of sidebands at even harmonic energies.
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Temporal characterization of high-order harmonics
Spectral shearing interferometry by laser field:

→ Extract the group delay (GD) of attopulse.

0

(a) (e)

Interference of quantum paths:

P ≈ A + B cos[2ω(τ − τGD − τAtom)],

where τGD ≈ (φ> − φ<)/2ω is group delay (GD) of attopulse.
RABBITT method due to H.G. Muller.
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Quite complex process...

Amplitude and phase of two-photon matrix elements

If we know the amplitudes and phases then we can compute τAtom

and deduce the group delay of the attopulses τGD in experiments.
RABBITT METHOD: [Paul et al. SCIENCE 1690 292 (2001)]
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What if we have isolated attosecond pulses?
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Photoelectron spectrogram

Overlap XUV continuum and phase-locked laser light:
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Laser-assisted redistribution of the photoelectron peak.
Depends on the instantaneous laser field.

See for instance: [Kienberger et al., NATURE 427, 817 (2004)] where isolated 250-as XUV pulses were detected.
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Temporal characterization of XUV continuum

Laser field will induce complicated interference effects

0

(a) (e) (d)

Laser-driven “streaking”

Classical picture!

of photoelectrons

pf ≈ p0 − A(t0), where A(t) is the vector potential.

See for instance: [Kienberger et al., NATURE 427, 817 (2004)] where isolated 250-as XUV pulses were detected.
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Quantum mechanical treatment
of Laser-assisted Photoionization by XUV pulse

- Let’s approximate the continuum states by Volkov states!

Amplitude for final momentum k:

ck(t) =

Indep. of t and k?︷ ︸︸ ︷
1

i
〈 φk | p̂z | g 〉

∫ t

−∞
dt ′ AX (t ′)︸ ︷︷ ︸

XUVat t′

e
i
∫ t′dt′′

Instantaneous energy︷ ︸︸ ︷{
[k + AL(t ′′)]2

2
+ Ip

}

∗ [M Kitzler, N Milosevic, A Scrinzi, F Krausz, and T Brabec PRL 88, 173904 (2002)]
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FROG-CRAB = Frequency Resolved Optical gating for
Complete Reconstruction of Attosecond Bursts

Iterative black-box method from ultra-fast optics
adaptation using the Strong Field Approximation (SFA).

[PRA, 71, 11401 (2005) (Mairesse* and Quéré)] *IUPAP winner
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FROG-CRAB

Problem solved?

= Frequency Resolved Optical gating for
Complete Reconstruction of Attosecond Bursts

Iterative black-box method from ultra-fast optics
adaptation using the Strong Field Approximation (SFA).

[PRA, 71, 11401 (2005) (Mairesse* and Quéré)] *IUPAP winner
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Is it OK to neglect all atomic effects?
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Experiment: Laser-assisted photoionization delay in neon

Test case for FROG-CRAB with relative 2p/2s measurement:

2s
2p

Reconstructed attosecond pulses
were not the same!

[Science 328, 1658 (2010) (Schultze et al.)]
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Comparison of neon experiment with theory

[4] Schultze et al. (2010) Experiment with FROG-CRAB
[10] Moore et al. (2011) Time-dependent R-matrix method
[27] Dahlström et al. (2012) Many-body perturbation theory
[12] Kheifets (2013) Hybrid: RPAE+CLC
[−] Feist et al. (2014) Hybrid: MCHF+CLC+dLC

[Feist* et al., Phys. Rev. A 89, 033417 (2014)] *IUPAP winner
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Neon 2p/2s delays revisited with RABBITT method

Experimental data

Finally more data!

from the group of Prof. Anne L’Huillier (LTH).

Theory by Dahlström and Lindroth: Many-body perturbation theory.
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What have we really learned since 2001?

Interpretation of the “atomic delay”:
Atomic delay ≈ Wigner delay + CLC delay:
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Target-specific Wigner delay of photoelectron.

Universal CLC (or CC) delay in noble gas atoms.
[Dahlström, L’Huillier and Maquet, JPB 45, 183001 (2012)] [Lindroth and Dahlström, PRA 96, 013420 (2017)]
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In negative ions the CC delay is small but not universal!
[Dahlström, L’Huillier and Maquet, JPB 45, 183001 (2012)] [Lindroth and Dahlström, PRA 96, 013420 (2017)]
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Can we think of a process with even shorter response time
— to be able to measure the ultra short pulses of tomorrow?
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Phase-sensitive multi-photon processes

(A) (B) (C)

(sequential)

(abs or emi of probe)

(two probe fields)

(A) Laser-assisted photoionization: RABBITT, FROG-CRAB...

(B) Bichromatic probe fields: [You et al. PRA 93, 033413 (2016)]

(C) Pump+Probe: [Pabst and Dahlström PRA 94, 013411 (2016)]
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PANDA: Photoionization of bound wave packet

Basic steps:

Bound wave packet.

Sequential ionization
(by attopulse at τ)

All angles detection
of photoelectron.

Spectral shearing interferometry → Precise characterization

[PRA, 94, 013411 (2016)(Pabst and Dahlström)]
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Spectral shearing by two-state wave packet

Phase difference between wave packet states j and j ′:

∆φ = ωj ′jτ︸︷︷︸
Propagation

+φ
(jj ′)
X (εf ) + φ

(jj ′)
D (εf )︸ ︷︷ ︸

Ionization

Ionization phase differences:

Spectral phase difference : φ
(jj ′)
X (εf ) = φX (ωfj )− φX (ωfj ′)

∼ GD

Dipole phase difference : φ
(jj ′)
D (εf ) = arg[dfj ]− arg[dfj ′ ] ∼???
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Case study: Alkali atoms

Example: Potassium (K)
[Ar]4s1 → 4p/5p → E`, m = 0

HF energies*:

(K+ core)



...
ε2p = −319.4 eV
ε3s = −53.40 eV
ε3p = −31.86 eV

ε4s = −3.996 eV
ε4p = −2.600 eV
ε5p = −1.240 eV,

np/n'p

Es/Ed 

(HF basis)
*STOCKHOLM CODE: (JM Dahlström and E Lindroth (2014) J. Phys. B: At. Mol. Opt. Phys. 47 124012)
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Partial photoionization cross section for K*
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Photoionization of excited valence states (4p and 5p) is not strongly affected by inner-core polarization (3p and 3s).

‘Characterization of attosecond pulses in the soft x-ray regime’ [JPB, 50, 104002 (2017)(Pabst and Dahlström)]
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Partial absorption for K*
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Example: 100 eV pulse with 10 eV bandwidth: Most of the ionization comes from inner-shell.

‘Characterization of attosecond pulses in the soft x-ray regime’ [JPB, 50, 104002 (2017)(Pabst and Dahlström)]

J. Marcus Dahlström Precise attosecond pulse characterization



Partial photoelectron distributions for K*
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Inner-shell contributions separate in energy and show no delay modulations (for independent particles).

‘Characterization of attosecond pulses in the soft x-ray regime’ [JPB, 50, 104002 (2017)(Pabst and Dahlström)]
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Summary of results for K*
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Various attosecond test pulses
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Figure: (a) Fourier limited (b) Linear chirp (c) 3rd order dispertion.
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Time-dependent PANDA calculations
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(i)

Ionization of the K ∗ : 4p/5p-wave packet
used to characterize different attosecond pulses.

Calculation using XCID program within the HF approximation.

J. Marcus Dahlström Precise attosecond pulse characterization



Effects beyond HF

Core polarization - complex dipole elements:
K*: RPAE (3p−1E`)4p/5p → E` kick out to valence (∼as).

Coupling to autoionizing state - Fano resonance (∼fs):
Ne*: TDCIS 2p−1 3s/4s → 2p−1 Ep ↔ 2s−1 3s (∼as)

Auger delay/Fluorescence - decay of inner-shell hole:
Breit-Wigner distribution � w.k.p. energy separation.

Shake up (soft x-ray range):
Kr*: Hartree-Slater (3d−1E`)4p−15s/6s → 6s/7s (30%)

Two ways to reach (3d−1E`)4p−16s implies interference!

‘Characterization of attosecond pulses in the soft x-ray regime’ [JPB, 50, 104002 (2017)(Pabst and Dahlström)]
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Effects beyond HF: Core polarization (RPAE in K*):

K wave packet: 4p and 5p
photoionized with virtual excitation of 3p and 3s core electrons:

Dfj ≈

Real︷ ︸︸ ︷
d
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Complex︷ ︸︸ ︷
∆d
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fj

j
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Effects beyond HF: Fano resonance

Ne*: 2p−1 3s/4s → 2p−1 Ep ↔ 2s−1 3s:
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Comparison: Response < 3 as — resonance lifetime 6.4 fs.

2p−13s 16.8 eV
2p−14s 19.7 eV
2p−1 → 2s−1 25.9 eV

Calculation using XCID program within the TDCIS approximation.

[PRA, 94, 013411 (2016) (Pabst and Dahlström)]
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Role of Fano resonance: Interpretation

Fano theory (one resonance 2s−13s and one continuum 2p−1Ep):

Dfj = dfj︸︷︷︸
Real

×
(qj + ε)

(1− iε)︸ ︷︷ ︸
Complex

, ε = (E − Eϕ − F )/(Γ/2)

where qj ∈ R is the Fano parameter.

Phase difference between initial j = 2p−13s or j ′ = 2p−14s:

arg

[
Dfj

Dfj ′

]
=

[
dfj

dfj ′
×

(qj + ε)

(qj ′ + ε)

]
= Nπ, if q, d ∈ R.

According to Fano theory there should be no delay!

J. Marcus Dahlström Precise attosecond pulse characterization



Role of Fano resonance: Interpretation

Fano theory (one resonance 2s−13s and one continuum 2p−1Ep):

Dfj = dfj︸︷︷︸
Real

×
(qj + ε)

(1− iε)︸ ︷︷ ︸
Complex

, ε = (E − Eϕ − F )/(Γ/2)

where qj ∈ R is the Fano parameter.

Phase difference between initial j = 2p−13s or j ′ = 2p−14s:

arg

[
Dfj

Dfj ′

]
=

[
dfj

dfj ′
×

(qj + ε)

(qj ′ + ε)

]
= Nπ, if q, d ∈ R.

According to Fano theory there should be no delay!

J. Marcus Dahlström Precise attosecond pulse characterization



Role of Fano resonance: Interpretation

Fano theory (one resonance 2s−13s and one continuum 2p−1Ep):

Dfj = dfj︸︷︷︸
Real

×
(qj + ε)

(1− iε)︸ ︷︷ ︸
Complex

, ε = (E − Eϕ − F )/(Γ/2)

where qj ∈ R is the Fano parameter.

Phase difference between initial j = 2p−13s or j ′ = 2p−14s:

arg

[
Dfj

Dfj ′

]
=

[
dfj

dfj ′
×

(qj + ε)

(qj ′ + ε)

]
= Nπ, if q, d ∈ R.

According to Fano theory there should be no delay!

J. Marcus Dahlström Precise attosecond pulse characterization



Conclusions:

Long-standing Ne attosecond delay problem solved?
Attosecond pulse characterization
by photoionization of a bound wave packet.
Within the independent particle approximation
the method is lag free.

Future directions:

Photoionization delays:
-Negative ions → Wigner delay [Lindroth & Dahlström PRA (2017)]

Pulse characterization using bound wave packets:
-Soft x-ray regime (e.g. shake-up) [Pabst & Dahlström JPB (2017)]

-Transient Abs. Spec.? [Dahlström, Pabst & Lindroth Submitted (2017)]

Thank you for your kind attention!
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PANDA:
Pulse Analysis by Delayed Absorption
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Photoelectron spectrogram with window resonance
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Laser-assisted redistribution of autoionization.

Theory of laser-assisted autoionization by attosecond light pulses

[PRA, 71, 060702 (2005) (Zhao and Lin)]
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Photoelectron spectrogram with window resonance
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Explicit form of Fano parameter:

qj =
〈 ϕ | T | j 〉+ p.v.

∫
dE ′〈 ϕ | H | ψE ′ 〉〈 ψE ′ | T | j 〉/(E − E ′)

π〈 ϕ | H | ψE 〉〈 ψE | T | i 〉

F (E ) = p.v.

∫
dE ′
|VE ′ |2

E − E ′
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Why is the quantum beat-delay removed completely
with angle-integrated photoelectron detection?
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Quantum beats with / without angular resolution

With angular resolution:
(wave packet: i and i ′ are 4p, 5p, mL = 0)

P(k, τ) =
1

k

∑
i

∑
i ′

cic
∗
i ′

∑
L=s,d

∑
L′=s,d

iL−L′YL′0(k̂)Y ∗L0(k̂)

× e−iηL+iηL′dfid
∗
f ′i ′EX (ωfi , τ)E ∗X (ωfi ′ , τ)

Without angular resolution:
(terms with L 6= L′ are removed)

P(ε, τ) =

∫
dΩkP(k, τ)∑

i

∑
i ′

∑
L=s,d

cic
∗
i ′dfid

(∗)
fi ′ EX (ωfi , tau)EX (ωfi ′ , τ),

no dependence on the scattering phases ηL(ε)!
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Delay in K* with 4p/5p-wave packet
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Case study with different attosecond pulses
Q: Can the spectral phase difference be retrived by quantum beats?
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Delay of quantum beats from 4p/5p wave packet in K*
Comparison of static HF and time-dependent [XCID] methods

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Photoelectron energy [au]

4

3

2

1

0

1

2

3

4
Di

po
le

 d
el

ay
 in

 z
 d

ire
ct

io
n 

[a
s]

[Time-dependent picture] Delay extracted from XCID simulations.

[Static picture • ] Delay: τD ≡
arg[dfj ]−arg[dfj′ ]

ωj′j
with k̂f = ẑ.
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Photoionization from excited Potassium
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Photoionization cross-section:

σph(E )[Mb] = a2
0 × 4π2αω

∑
Lf =s,d

|zfi |2

Experiment: Petrov at al. Eur. Phys. J. D 10, 53-65 (2000)
Theory (pol. pot.): Zatsarinny and Tayal PRA 81, 043423 (2010)
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Partial d-wave ionization from excited Potassium
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Cooper minimum in cross-section for partial d-wave:

σph(E )[Mb] = a2
0 × 4π2αω|zfi |2, Lf = d
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Photoionization phase from excited Potassium
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Phase of 〈 f | z | i 〉, i = 4p, 5p to final momentum state:

| f 〉 = ψ−k (r) =
1

k1/2

∞∑
L=0

L∑
M=−L

iLe−iηLY ∗LM(k̂)YLM (̂r)RE (r)

with energy E and scattering phases ηL(E ) with k̂ = ẑ.
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Helium 1s angle-resolved delays with RABBITT method

Experimental data from the group of Prof. Ursula Keller (ETH).

Theory by Dahlström and Lindroth: LOPT = Many-body pert. theory.

[REFERENCE!]
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When can the atomic response be neglected?

It depends strongly on the target and detection method!

Estimate for neon from 2p state at 50 eV:
c ≈ 0.5 as/eV → δtcrit ≈ 30 as

Actual duration Reconstructed duration

100 as 100.4 as
30 as 42.4 as

[Pabst and Dahlström PRA 94, 013411 (2016)]
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Temporal characterization of coherent XUV continuum

No temporal information by one-photon ionization

0

(d)

Broad photoelectron peak:

Centered at ε = Ω− Ip with ∆Ω > ω.
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Theory: Laser-assisted photoionization delay in neon
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[Dahlström, Carette and Lindroth, Phys. Rev. A, 86, 061402(R) (2012)]
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