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Ok, but how do we go beyond this to
uncover new or previously overlooked
physics ?
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Focus

* Progress in treating Scattering and
Resonances in the Time Independent
Schrodinger Equation = Shape & Feshbach

> Stabilization and Complex scaling - For
resonances and more(?)

» Equvalent quadrature

» R-Matrix and J-Matrix Method(s)

» Complex-Kohn Method

* Progress in treating the Time Dependent
Schrédinger Equation in ultrashort (10-18
sec ), intense EM Fields

dance - =
» Propagation of the



The Phenomena: Photoabsorbtion
Discovered at
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Note the sharp lines appearing in a continuous
spectum
What are they??
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The total scattering cross section {32] for e+l (v=0)

a. Bonham and Kenperly {+) compared with the theoretical
sum [ } of Dubé-Herzenberg HE resonant results am
Chandra-Temkin non resonant background (-———- Y.

b. Bonham and Kennerly experimental results (-) compared
with the theoretical sum (——) of the present N cor
21 resomant results and Buckley-Burke non resonant
background (-———- ¥-

Note the peaks appearing in a scattering cross section
What are they??



The Early Days

« Use standard scattering methods
» Solve coupled 1D equations — extract phase shifts
Difficult for atoms — Very difficult for molecules
« People (mostly chemists) begin to think.
Hmm, Can we cheat ? - modify bound state methods
(or otherwise) to treat scattering processes.
Carefully taking continuum limit
1€ — 0
» A computational experiment: Expansions in L?
functions approximate scattering functions to within
a normalization
» How to extract information — Stabilization (Taylor) —
Equivalent quadrature ( Heller, Yamani, Reinhardt),
Complex rotation ( Reinhardt, McCurdy, Rescigno,
etc.) - Still alive and well after 45 years



The Early Days

Stabilization — Howard Taylor
Early observation: For resonances the energy
“stabilizes” with the size of the L4 basis set. Phase
shifts can be extracted at the eigenvalues ( Frank
Harris, Bob Nesbet)
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FIG. 4. Comparison of the exact amd approximate
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Complex Rotation — An Odd ldea?

r — rexp(16)
Originally used to compute only resonance positions
and widths - Barry Simon — Resonances rotated into
lower half of complex plane and exposed — decaying
basis can be used - BUT
Scaling the inner orbitals gave numerical problems —
They decayed but oscillated wildly [ exp[—arexp(i6)] ]
The non-analyticity of the electron-nuclear interaction
make it impractical to scale just the electronic
coordinate in the BO approximation
Can be reformulated to use complex exponents — More
robust
Sharp or smooth exterior complex scaling — Rotate
outside aradius r=R. Produces only outgoing waves
and scattering information can be extracted.



The Early Days

Equivalent Quadrature

The problem of interpreting the L? discretization of an operator with a continuous
spectrum is partially solved for the s-wave kinetic energy, H". It is shown that matrix
elements of the resolvent operator (z — A%~ where H° is a matrix representation of
H" in an L*® basis, may be interpreted as quadrature approximations to the actual
spectral representation of the resolvent, allowing the z — E 4 /e limit to be taken for
E in the continuous spectrum of H® with no residual error due to the poles of (z — H%.
Specifically it is shown that diagonalization of H? in a Laguerre-type basis is equivalent
to a Chebyschev quadrature of the second kind, allowing resolution of the problem of
interpreting matrix elements of (z — A1 in the entire cut z-plane.
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What Did We Learn

e Bound state techniques, suitably modified, can
be used to extract scattering information.
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where the physics becomes simpler.
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Development
| = Burke and co-workers
Outer region only introduce a computational

multipolar forces R-matrix idea borrowed

from nuclear physics into
electron-atom seattering.

SR Y

Radius of sphere
chosen to enclose
strong interaction
region — exchange,
correlation



R-Matrix Method

Hy 1(r;R)¥ (r;R) = E(R)¥' (r;R)  Anticipate
N1 molecules
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ny basis set — BO assures Hermiticity and
accelerates convergence — enabled molecular
calculations




The Full Theory - Mind Your P’s and
'S

 The total Wavefunctioc% IS divided into a P-

space and Q-space part.

« P-space carries asymptotic information about

possible breakup channels

e Q-space describes correlation and other
shorter range phenomena

P-space — explict channel ennumeration
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lNne scattering
Wa\/ﬁfunctl

zk: Ex(R) - E(R)
Projecting this onto channel states, setting the

radial variable to its value at the R-Matrix
surface, gives
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Some Remarks

For practical reasons, for polyatomics, the basis sets
must be Gaussians

As a consequence of the finite box, the tails of integrals
Involving diffuse Gaussians need to be subtracted - in
practice not a problem - use multipole expansions

As we showed, a single diagonalization provides the
iInformation to extract the full scattering K-matrix for all E.
Thus any resonances are readily found without the need
for complex rotation, complex basis functions or any
non-hermitian mathematics.

Treatment of the external region depends on the nature of
the problem but it is crucial that only local potentials are
Important outside the R-matrix box. Often simply
matching to free waves is sufficient

Internal and external dynamics dominated by different
Physics — Can be exploited



J=-Matrix Method

« Expand in special L? basis that;

 Represents both solutions to the “free”
particle Hamiltonian asymptotically
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« Asymptotic solutions are known “exactly” In
the basis




What Happens When the
Nuclel Move ?

« Adiabatic Nuclei Approximation- Take scattering

amplitudes computed at fixed geometry, multiply by a
ro-vibrational wavefunction and integrate over nuclear
coordinates to produce,;

favajamsyseveioms, (K - ) = (Xva(R)Yjaymy, (R)| fac(€', &) v (R)Yjomy, (R)

» Works when electron collision times are
short compared to nuclear motion

» Fails to describe threshold effects(energetics
certainly and possibly dynamics)

» Falls to describe many resonance
phenomena



Dueling Resonances in H,: A Computational
Discovery with Fixed Nuclel
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Two State Close Coupling in e + H.;:
Importance of Orthogonality
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What Happens When the
Nuclel Move ?

 Beyond Adiabatic Nuclel Approximation - Is it
necessary to completely couple the electronic
and nuclear degrees of freedom non-
adiabatically everywhere ?

» Can a local BO treatment at short range be
relaxed at long range to produce sensible
results.

> |Is the key to the answer contained in the idea
of the R-matrix.

» How can this be integrated into the formalism
and computational scheme.



Full Electronic plus Nuclear SE
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The Spectral R-Matrix and its Physical
Interpretation
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Interpretatio

e If numeratot varies slowly with R — Factor to get Franck-
Condon Overlaps between N and (N+1) Electron Vibrational
states

« Denominators vanish at compound state vibrational energies
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FIG. 1. Potential curves for N, and N, : dash-dotted
line, ground state of N,; dotted line, resonant state of
N, ; and solid line, R-matrix states of N,".

Step 1
Get the curves

These were
computed at the
SCF level for the
negative ion just

as HST would
have done

Two-particle-
one-hole
calculations
give equivalent
results



The Proof of the Pudding

e o(R®)
T [ | |
B = prasent Eﬂg"
BB Background
s
L=
24 f=
i == =
s J N
LT T O e o it i e
ER -l—-—l‘---*
¥R Background
e, e A O | : . I
| : J ) - ;| '] )

INCIDENT EHERGY (aV)

INCIDENT ENERGY

=

The total secattering eroszs section (82) for ety (v=0)

a. Bonham and Kennerly {+) compared with the theoretical

resonant results am

sum } of Dubé-Herzenberg 27
Chandra-Temkin non resonant background (=——-- i

Bonham and Kennerly experimental results (-] compared
with the theoretical sum (——) of the present N3 cor
21 resonant results and Buckley=Burke non resonant
background (==-—=).



More Pudding:Comparison with
Vibrationa' 2.5
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FIG. 4. Comparison of calculated cross sections for
vibrational excitation in N,.

Our theoretical results nailed
the open question of the
normalization of the X-section
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Summary of R-Matrix Contributions

The R-matrix idea of separating regions
dominated by different physical effects can give
rise to Important conceptual and computational
simplifications
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Lodal sdiabatic cross section of Egure 4.

Transform wavefunction at molecular core to
Include rovibrational effects WHEN NEEDED.



Concurrent Development

Complex Kohn Method
The variational principle

=20 L +d§;@19 =BV >

o >= Z frorr + T gr | ZCF/

The coefflc:lents are found by varying the statlonary
expression with respect to the parameters to get the trial T

O,=a L? N + 1lwavefunction W ="a L? one-electron orbital
fp (r) = a regular radial function such as a spherical Bessel

or Coulomb function

ggl (r) = an irregular radial function such as a spherical

Neumann or Coulomb function regularized at the origin



Properties of Complex Kohn
One electron orbitMs%D&%pan the “internal”

region
One electron continuum functions are

orthogonalized to ALL one electron bound
orbitals.

No spurious poles in T-matrix due to using Hankel
function as outgoing wave — complex symmetric
matrix

All direct coulomb-like integrals done analytically
when Gaussian basis sets employed — Important
for molecular scattering

Using separable expansions the non-coulomb
Integrals between Gaussian and continuum



Optical Potential Formalism
K = Z ‘@u > @u‘

P=I-Q

Hepr = Hpp +(H — E)pg(E — H)gg(H — E)gp

Variation of the parameters leads to algebraic
equations which when solved and substituted
back into the variational expression, yields,

'T] = —2(Mgg — MogM_ M)
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rFolyatomic scattering using the
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FIG. 1.

Elastic differential cross section for e ~-CH,O.
Solid curve: optical-potential results at 90°; dashed curve:
optical-potential results at 120°; dash-dotted curve: static-

exchange result at 90°. Inset: Experimental results of Benoit
and Abouaf (Ref. 8).
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What about Impact lonization

 All methods discussed so far do not treat
three particle breakup — impact ionization
« Three Coulomb particles — no analytic

solution known for all E and all angles

An electron colliding with a hydrogen atom
to yield two electrons and a proton is the
simplest example of electron-impact
lonization. Mathematically formulated in the
1950s, this three-body problem in quantum
mechanics has required supercomputers
for its solution. Shown are wave functions
for the breakup of a system of three
charged particles. Understanding collisional
lonization is essential for problems such as
low-temperature plasma formation.




How was this problem solved

« Wavefunction expanded in partial waves

e Coupled PDE’s in the radial coordinate
discretized using FD

« The key- ECS to directly avoid scattering
BC’s- Price paid is a large (5x10°) set of
sparse, complex, algebraic equations — not
particularly well conditioned

e Scattering information extracted using flux —
better approaches using integral formula
developed later



Some Results
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The Time Dependent Approach

Work with wavepackets having an energy
spread in collisions problems or fixed initial
state in photon collisions

Important to take limits carefully
Advantage that there is no need to impose
boundary conditions — analyze the
wavefunction by projection at large distances
Propagation in time may need to be carried
out for large distances and long times to
compute experimental observables — Other
approaches such as ECS can avoid this.



A New Sort of Basis: The DVRZ
Define a set of “coordinate” functions

N
ui(x) = W Z ¢n($)¢ﬂ($ﬂ) Orthogonal

Polynomials
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The Finite Element DVR Basis

Propertie
S
* Each coordinate divided into elements of arbitrary
size

* Each element has an arbitrary number of DVR functions

but the objective is to use the minimal number for the

accuracy required
* Only function continuity enforced at the element
boundaries — Is that legal ?
Gauss-Lobatto quadrature rule - Common end

poInts
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( Fla)-F i) 2 s reniieey

H
Fn( ) 3. Matrix elements easily
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1 subelements




FED VR Vatrix structure in one
dimension
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One Effective Approach to Time Propagation

Methods

* Short Iterative CH(t) At
Ulto + At. tg) ~ exp|—i—0
Lanczos U + AL to) & Xt

Diagonalize Hamiltonian in Krylov basis

Brtiln +1>= [H(l) — aplin > —Bpln—1>

‘q'n. - = H(tﬂ) i an] ‘n > —ﬂn‘ﬂ —-1>
Bnt1 = V< anlgn>
H(t At E,(tg) Al
< g exp[—1 ( 0) |¢q' == Z < Yq|n > exp[—i (7:) ] nithy >
° matrix vector multiply, a few scalar products and

diagonalization of tri-diagonal matrix
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Comparison of Theoretical and Available
Experimental Results -Total X-Sect
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Performance on Various Mutiprocessors

Table 1: Performance of the He FEDVR code on various platforms.
Name CPUs GHz cores/CPU CPU’s/cores per node

Coyote Opteron 2.60 1 2/2
Lobo Opteron  2.20 4 4/16
Ranger  Opteron 2.30 )\ 1/16
Lonestar Xeon 2.66 2 2/4
Abo Xcon  2.33 4 2/8 Bartschat et. al.
Queen Bee  Xeon  2.33 4 2/8
Kraken Opteron  2.33 4
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Conclusion

Definition of T eff is correct for Non-
Sequential DI process

Total X-sections can be extracted properly
using Coulomb projection - At long times
and large distances the wavepacket consists
of a superposition of stationary states with
the electrons WELL SEPARATED

Pulse shape affects resolution

Total X-section not very sensitive to angular
momentum included
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Quantum Interference Effects In
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Quantum Interference Effects In

_I_
Photon energy =350eV 2 Photon energy =630eV
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Final Remarks

* Computation in AMO physics play a critical role In
understanding many complex F_rocess that result from the

Thagkmyier Laaftamaadigisonal Laboratory, The
US National Science Foundation and the

NS F %thﬁg ﬁ;@:”ﬁé’%?@ﬂ SRR ER deYRI BBy are

for ﬁ'%ego?t%ge e b do what | enjoy for 45 years

* Access to high performance computing facilities enables us
to push our methods to the limits and produce results In
many cases that are more accurate than experiment

Personally, | have found doing this kind of science challenging
and extremely rewarding — | have met and worked with

some wonderful and pretty smart folks. - | hope you come
away with a similar feeling AND | hope can continue doing

what | enjoy a while longer



